CF1753

发布时间 2023-07-02 20:26:03作者: jeefy

CF1753

成功因为虚拟机炸了,重新写一遍此文。

都是没有保存的错

A. Make Nonzero Sum

由于 Note that it is not required to minimize the number of segments in the partition.。考虑每一段最小化……

可以发现,每一段都可以划分为长度为 1 或 2 的段。于是考虑影响。

只有长度为 2 的段会改变正负,不妨令 \(C_+, C_-\) 分别表示 1 和 -1 的个数,并假定 1 更多。

不难发现,只需要 \(\frac {|C_+ - C_-|}2\) 个长度为 2 的即可。

如果不是整数,那么直接判不可以即可。

由于有影响,考虑 DP。

\(f_i\) 表示考虑前 \(i\) 个数,最多能够放多少个长度为 2 的。

于是有

\[f_i = \max \begin{cases} f_{i - 1} \\ f_{i - 2} + 1 &, a_i = 1 \end{cases} \]

考虑在 DP 变化的地方放置长度为 2 的即可。

B. Factorial Divisibility

当时脑子抽了,用了两种合并的方法。

详见:https://codeforces.com/contest/1753/submission/211561532

但是实际上只需要通过 \(x! = x \times (x -1)!\) 合成即可(2048……

C. Wish I Knew How to Sort

假定有 \(C_0\)\(0\),并且在前 \(C_0\) 个数中有 \(k\) 个 1。

那么考虑此时一个有效的操作,即是在前 \(C_0\) 中选择到了一个 \(1\),在后面中选择了一个 \(0\)

有效的概率为

\[P_k = \cfrac {k^2}{n \choose 2} \]

于是考虑状态转移,设 \(f_k\) 表示从前 \(C_0\) 个数中有 \(k\)\(1\) 的状态转移到 \(0\)\(1\) 的期望步数。

根据 markov 中的期望线性方程求解的方法,有

\[f_k = 1 + (1 - P_k)f_k + P_k f_{k - 1} \]

稍微魔改一下,就变成了:

\[f_k = \frac {1}{P_k} + f_{k - 1} \]

于是小小递推即可。

然而我当时是反着推的,无所谓,一样的:Submission #211560140 - Codeforces

D. The Beach

转换问题:等价于将两个 . 移动到一起的最小代价。

显然可以发现,一个障碍最多移动一次。

借用大佬的图:

于是我们可以考虑如此建图。跑一个最短路即可。

提交:Submission #211566195 - Codeforces

E. N Machines

非常恶心,虽然不是顶级难度。

最优的策略一定是把乘法向后移,把加法向前移。

思考 It's guaranteed that the current value of the resulting product does not exceed 2x10^9. 的意义。

发现,除去 \(\times 1\),最多只会有 \(\log C\) 个乘法。

于是考虑枚举其子集,为 \(2^{\log C}\)。所以需要优化。

有一个简单而优雅的剪枝:如果两个数相等,那么一定是选择最前面的。

由于 \(12! = 6227020800 \gt 2 \times 10^9\),所以其实最多只会有 \(O(2^{12})\) 种状态。

那么在钦定了向后移动的乘法后,我们需要找到前 \(rest\) 个移动到前面贡献最大的加法。

考虑二分移动到前面的贡献 \(\Delta\),在每一段再二分数量。

考虑如何计算每一个加法的 \(\Delta\) ?考虑加法移动前,其贡献为 \(x \times suf_x\),移动后的贡献为 \(x \times pre_x \times suf_x\)

其中 \(suf_x\)\(pre_x\) 是指乘法移动后,\(x\) 前面的乘法前缀积和后面的乘法后缀积。

于是 \(\Delta x = x \times (pre_x - 1) \times suf_x\)

NOTICE

  • 二分 \(\Delta\) 时找到最大的 \(cnt > rest\) 的那个 \(\Delta\),由于多算了 \(cnt- rest\) 个,并且这些数的贡献一定是 \(\Delta\),所以再减去 \((cnt - rest) \times \Delta\) 即可。

  • \(\Delta\) 可能很大很大,所以上界大一点(我用的倍增,所以直接是从 \(2^{60}\) 开始向下……虽然没必要)

提交:Submission #211609810 - Codeforces

F. Minecraft Series

首先固定一个正方形,考虑贡献:将数分为正数与负数,分别计算 \(mex_p\)\(mex_n\)

正的为 positive,负的为 negative

于是贡献为 \(mex_p + mex_n - 1\)

由于 \(mex\) 的单调性,发现包括合法正方形的正方形一定合法,所以考虑双指针维护所在最小合法正方形的。

注意,是在每一条对角线上来一发双指针,这样才能保证复杂度。

然后,然后就搞定了。

可以优化的是,\(mex\) 可以利用分块优化复杂度。

于是你可以得到一个复杂度为:

\[O(nm \cdot \min\{n, m\} + n m \sqrt k) \]

的优雅 brute force……

提交:https://codeforces.com/contest/1753/submission/211685792

然而……不断的 TLE 让我怀疑人生,最后发现……

参考:讨论