CodeForces 1709F Multiset of Strings

发布时间 2023-11-17 08:59:48作者: zltzlt

洛谷传送门

CF 传送门

考虑若确定了所有 \(c_s\),如何计算集合最大大小。

下文令原题面中的 \(f\)\(m\)

发现我们可以类似倒推地确定。比如若 \(n = 3\)\(c_{00} = \min(c_{000}, c_{001})\)\(c_{01} = \min(c_{010}, c_{011})\)\(c_{10} = \min(c_{100}, c_{101})\)\(c_{11} = \min(c_{110}, c_{111})\)\(c_0 = \min(c_{00}, c_{01}), c_1 = \min(c_{10}, c_{11})\)。最大集合大小就是 \(c_0 + c_1\)

放到一棵满二叉树上考虑(可以理解为 01-Trie),我们有 \(f_u = \min(f_u, f_{ls_u} + f_{rs_u})\)

考虑计数。设 \(g_{i, j}\) 自底向上第 \(i\) 层结点,\(f_u = j\) 的方案数。转移枚举 \(f_u\) 还是 \(f_{ls_u} + f_{rs_u}\) 取到最小值,有:

\[g_{i, j} = (\sum\limits_{x + y \ge j} g_{i - 1, x} g_{i - 1, y}) + (k - j) \sum\limits_{x + y = j} g_{i - 1, x} g_{i - 1, y} \]

加法卷积计算 \(h_j = \sum\limits_{x + y = j} g_{i - 1, x} g_{i - 1, y}\),有:

\[g_{i, j} = (\sum\limits_{p \ge j} h_p) + (k - j) h_p \]

可以前缀和计算。

答案即为 \(\sum\limits_{x + y = m} g_{n, x} g_{n, y}\)

时间复杂度 \(O(nk \log k)\)

code
// Problem: F. Multiset of Strings
// Contest: Codeforces - Educational Codeforces Round 132 (Rated for Div. 2)
// URL: https://codeforces.com/contest/1709/problem/F
// Memory Limit: 512 MB
// Time Limit: 6000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 1000100;
const ll mod = 998244353, G = 3;

inline ll qpow(ll b, ll p) {
	ll res = 1;
	while (p) {
		if (p & 1) {
			res = res * b % mod;
		}
		b = b * b % mod;
		p >>= 1;
	}
	return res;
}

ll n, m, K, r[maxn], f[20][maxn];

typedef vector<ll> poly;

inline poly NTT(poly a, int op) {
	int n = (int)a.size();
	for (int i = 0; i < n; ++i) {
		if (i < r[i]) {
			swap(a[i], a[r[i]]);
		}
	}
	for (int k = 1; k < n; k <<= 1) {
		ll wn = qpow(op == 1 ? G : qpow(G, mod - 2), (mod - 1) / (k << 1));
		for (int i = 0; i < n; i += (k << 1)) {
			ll w = 1;
			for (int j = 0; j < k; ++j, w = w * wn % mod) {
				ll x = a[i + j], y = w * a[i + j + k] % mod;
				a[i + j] = (x + y) % mod;
				a[i + j + k] = (x - y + mod) % mod;
			}
		}
	}
	if (op == -1) {
		ll inv = qpow(n, mod - 2);
		for (int i = 0; i < n; ++i) {
			a[i] = a[i] * inv % mod;
		}
	}
	return a;
}

inline poly operator * (poly a, poly b) {
	a = NTT(a, 1);
	b = NTT(b, 1);
	int n = (int)a.size();
	for (int i = 0; i < n; ++i) {
		a[i] = a[i] * b[i];
	}
	a = NTT(a, -1);
	return a;
}

inline poly mul(poly a, poly b) {
	int n = (int)a.size() - 1, m = (int)b.size() - 1, k = 0;
	while ((1 << k) <= n + m + 1) {
		++k;
	}
	for (int i = 1; i < (1 << k); ++i) {
		r[i] = (r[i >> 1] >> 1) | ((i & 1) << (k - 1));
	}
	poly A(1 << k), B(1 << k);
	for (int i = 0; i <= n; ++i) {
		A[i] = a[i];
	}
	for (int i = 0; i <= m; ++i) {
		B[i] = b[i];
	}
	poly res = A * B;
	res.resize(n + m + 1);
	return res;
}

void solve() {
	scanf("%lld%lld%lld", &n, &K, &m);
	for (int i = 0; i <= K; ++i) {
		f[1][i] = 1;
	}
	for (int i = 2; i <= n; ++i) {
		poly a(K + 1);
		for (int j = 0; j <= K; ++j) {
			a[j] = f[i - 1][j];
		}
		a = mul(a, a);
		ll s = 0;
		for (int j = K + K; ~j; --j) {
			s = (s + a[j]) % mod;
			if (j <= K) {
				f[i][j] = (s + a[j] * (K - j)) % mod;
			}
		}
	}
	poly a(K + 1);
	for (int i = 0; i <= K; ++i) {
		a[i] = f[n][i];
	}
	a = mul(a, a);
	printf("%lld\n", m >= (ll)a.size() ? 0LL : a[m]);
}

int main() {
	int T = 1;
	// scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}