sin x的无穷乘积式

发布时间 2023-06-13 18:25:29作者: MDNTCT

\(\sin{x}\)的无穷乘积式

观察以下两个式子:

\[\boxed{\begin{aligned} &\sin{3x}=3\sin{x}-4\sin^3{x}\\ &\sin{5x}=5\sin{x}-20\sin^3{x}+16\sin^5{x}\\ &\cdots \end{aligned}} \]

可以发现

\[\sin{(2n+1)x}=\sin{x}\cdot\mathrm{P}(\sin^2{x}) \]

其中\(\mathrm{P}(x)\)是关于\(x\)\(n\)次多项式.

因为\(\lim_{x\to0}\dfrac{\sin{(2n+1)x}}{\sin{x}}=2n+1\),所以\(\mathrm{P}(x)\)的常数项为\(2n+1\).

同时,\(\sin{(2n+1)x}\)的根为\(\dfrac{k\pi}{2n+1},k\in\mathbb{Z}\),所以\(\sin^2{\dfrac{k\pi}{2n+1}},k=1,2,\cdots,n\)恰为\(\mathrm{P}(x)\)\(n\)个根.

\[\begin{aligned} &\mathrm{P}(x)=(2n+1)\left(1-\frac{x}{\sin^2{\dfrac{\pi}{2n+1}}}\right)\left(1-\frac{x}{\sin^2{\dfrac{2\pi}{2n+1}}}\right)\cdots\left(1-\frac{x}{\sin^2{\dfrac{n\pi}{2n+1}}}\right)\\ &\mathrm{P}(x)=(2n+1)\prod_{k=1}^{n}\left(1-\frac{x}{\sin^2{\cfrac{k\pi}{2n+1}}}\right)\\ &\frac{\sin{(2n+1)x}}{\sin{x}}=(2n+1)\prod_{k=1}^{n}\left(1-\frac{\sin^2{x}}{\sin^2{\dfrac{k\pi}{2n+1}}}\right)\\ &\frac{\sin{x}}{(2n+1)\sin{\cfrac{1}{2n+1}x}}=\prod_{k=1}^{n}\left(1-\cfrac{\sin^2{\cfrac{1}{2n+1}x}}{\sin^2{\dfrac{k\pi}{2n+1}}}\right)\\ &\frac{\sin{x}}{(2n+1)\sin{\cfrac{1}{2n+1}x}\displaystyle\prod_{k=1}^{m}\left(1-\cfrac{\sin^2{\cfrac{1}{2n+1}x}}{\sin^2{\dfrac{k\pi}{2n+1}}}\right)}=\prod_{k=m+1}^{n}\left(1-\cfrac{\sin^2{\cfrac{1}{2n+1}x}}{\sin^2{\dfrac{k\pi}{2n+1}}}\right)\\ \end{aligned} \]

左边对\(n\)取极限,使\(n\to\infty\).

\[\frac{\sin{x}}{x \displaystyle \prod_{k=1}^{m}\left(1-\cfrac{x^2}{k^2\pi^2}\right)} \]

对于右边,有这一不等式

\[\boxed{\begin{aligned} &\frac{2}{\pi}x<\sin{x}<x,x\in\left(0,\frac{\pi}{2}\right)\\ &\sin^2{\frac{1}{2n+1}x}<\frac{x^2}{(2n+1)^2}\\ &\sin^2{\frac{k\pi}{2n+1}}>\frac{4k^2}{(2n+1)^2}\\ &\frac{\sin^2{\cfrac{1}{2n+1}x}}{\sin^2{\cfrac{k\pi}{2n+1}}}<\frac{x^2}{4k^2}\\ \end{aligned}} \]

于是就有

\[\begin{aligned} &1>\prod_{k=m+1}^{n}\left(1-\cfrac{\sin^2{\cfrac{1}{2n+1}x}}{\sin^2{\dfrac{k\pi}{2n+1}}}\right)>\prod_{k=m+1}^{n}\left(1-\cfrac{x^2}{4k^2}\right)>\prod_{k=m+1}^{\infty}\left(1-\cfrac{x^2}{4k^2}\right)\\ &1>\prod_{k=m+1}^{n}\left(1-\cfrac{\sin^2{\cfrac{1}{2n+1}x}}{\sin^2{\dfrac{k\pi}{2n+1}}}\right)>\prod_{k=m+1}^{\infty}\left(1-\cfrac{x^2}{4k^2}\right) \end{aligned} \]

这个式子是否成立与\(n\)的取值无关,所以代入\(n\to\infty\)的极限可得

\[\boxed{1>\frac{\sin{x}}{x \displaystyle \prod_{k=1}^{m}\left(1-\cfrac{x^2}{k^2\pi^2}\right)}>\prod_{k=m+1}^{\infty}\left(1-\cfrac{x^2}{4k^2}\right)} \]

再在两边对\(m\)取极限,使\(m\to\infty\).两边极限都是\(1\),所以根据极限夹逼准则,可得

\[\boxed{\frac{\sin{x}}{x }= \prod_{k=1}^{\infty}\left(1-\cfrac{x^2}{k^2\pi^2}\right)} \]

\[\boxed{\sin{x}=x \prod_{k=1}^{\infty}\left(1-\cfrac{x^2}{k^2\pi^2}\right)} \]

\(\cfrac{\sin{x}}{x }\)也被称为\(\mathrm{sinc}\,x\).