6.4.3(1) 余弦定理

发布时间 2023-05-04 20:27:58作者: 贵哥讲高中数学

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第二册同步巩固,难度2颗星!

基础知识

解三角形

一般地,三角形的三个角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\)叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形.
 

余弦定理

(1) 内容
三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.
\(a^2=b^2+c^2-2bc\cos A\)\(b^2=a^2+c^2-2ac\cos B\)\(c^2=a^2+b^2-2ab\cos C\).
image.png
证明 因为 \(|\overrightarrow{B C}|^2=\overrightarrow{B C}^2=(\overrightarrow{A C}-\overrightarrow{A B})^2=\overrightarrow{A C}^2-2 \overrightarrow{A C} \cdot \overrightarrow{A B}+\overrightarrow{A B}^2\)
\(=\overrightarrow{A C}^2-2|\overrightarrow{A C}|\cdot |\overrightarrow{AB} | \cos ⁡A+\overrightarrow{AB}^2\)
所以\(a^2=b^2+c^2-2bc\cos A\)
同理可得\(b^2=a^2+c^2-2ac\cos B\)\(c^2=a^2+b^2-2ab\cos C\).
 

(2) 变形
\(\cos A=\dfrac{b^2+c^2-a^2}{2 b c}\)\(\cos B=\dfrac{a^2+c^2-b^2}{2 a c}\)\(\cos C=\dfrac{a^2+b^2-c^2}{2 a b}\)

(3)利用余弦定理可以解决下列两类三角形的问题
① 已知三边,可求三个角;
**【例】 **在\(△ABC\)中,若\(a=4\)\(b=3\)\(c=\sqrt{13}\),则角\(C=\)\(\underline{\quad \quad}\) .
\(\cos C=\dfrac{a^2+b^2-c^2}{2 a b}=\dfrac{16+9-13}{24}=\dfrac{1}{2} \Rightarrow C=\dfrac{\pi}{3}\).
② 已知两边和一角,求第三边和其他两个角.
【例1】\(△ABC\)中,\(A=30°\)\(b=\sqrt{3}\)\(c=1\),则\(a=\)\(\underline{\quad \quad}\) .(角\(A\)为两边的夹角)
\(a^2=b^2+c^2-2bc\cos A=3+1-3=1⇒a=1\).
【例2】\(△ABC\)中,\(A=30°\)\(b=3\sqrt{3}\)\(a=3\), 则边\(c=\)\(\underline{\quad \quad}\). (角\(A\)不为两边的夹角)
\(a^2=b^2+c^2-2bc\cos A⇒9=27+c^2-9c⇒c=3\)\(c=6\).
 

三角形类型的判断

\(\angle A=\dfrac{\pi}{2} \Rightarrow b^2+c^2=a^2\)
\(\angle A>\dfrac{\pi}{2} \Rightarrow \cos A=\dfrac{b^2+c^2-a^2}{2 b c}<0 \Rightarrow b^2+c^2<a^2\)
\(\angle A<\dfrac{\pi}{2} \Rightarrow \cos A=\dfrac{b^2+c^2-a^2}{2 b c}>0 \Rightarrow b^2+c^2>a^2\).
 

射影定理

\(a=c \cdot \cos B+b \cdot \cos C\)\(b=a \cdot \cos C+c \cdot \cos A\)\(c=b \cdot \cos A+a \cdot \cos B\)
image.png
 

基本方法

【题型1】 余弦定理解三角形

**【典题1】 ** 若\(△ABC\)的三边长分别为\(3\)\(6\)\(7\),则该三角形最大角的余弦值为 \(\underline{\quad \quad}\)
**解析 ** \(\because△ABC\)的三边长分别为\(3\)\(6\)\(7\)
\(\therefore\) 该三角形最大角的余弦值为 \(\dfrac{3^2+6^2-7^2}{2 \times 3 \times 6}=-\dfrac{1}{9}\)
**点拨 ** 三角形中大角对大边;已知三角形的三边可用余弦定理求三内角.
 

**【典题2】 **\(△ABC\)的内角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\),已知\(a=\sqrt{5}\)\(c=2\)\(\cos A=\dfrac{2}{3}\),则\(b=\)\(\underline{\quad \quad}\)
**解析 ** 因为\(a=\sqrt{5}\)\(c=2\)\(\cos A=\dfrac{2}{3}\)
所以由余弦定理可得: \(\cos A=\dfrac{b^2+c^2-a^2}{2 b c}\),即 \(\dfrac{2}{3}=\dfrac{b^2+4-5}{4 b}\)
整理可得:\(3b^2-8b-3=0\),解得\(b=3\)\(-\dfrac{1}{3}\)(舍去),
所以\(b=3\).
**点拨 **已知三角形的两边与一角,可用余弦定理求第三边.余弦定理有三条,那一般题中涉及哪个角就用对应的余弦定理公式.
 

【巩固练习】

1.在\(△ABC\)中,\(A=30°\)\(b=\sqrt{3}\)\(c=1\),则\(a=\)(  )
 A.\(2\) \(\qquad \qquad \qquad\) B.\(\sqrt{3}\) \(\qquad \qquad \qquad\) C.\(\sqrt{2}\) \(\qquad \qquad \qquad\) D.\(1\)
 

2.在\(△ABC\)中,内角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\).若\(a=3\)\(A=30°\)\(b=3\sqrt{3}\),则\(c\)值为(  )
 A.\(3\) \(\qquad \qquad \qquad\) B.\(3\)\(6\) \(\qquad \qquad \qquad\) C.\(\sqrt{3}\) \(\qquad \qquad \qquad\) D.\(\sqrt{3}\)\(6\)
 

3.在\(△ABC\)中,已知角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\)\(a=1\)\(b=\sqrt{2}\)\(C=45^∘\),则边\(c\)等于\(\underline{\quad \quad}\) .
 

4.在\(△ABC\)中,若\(ac=8\)\(a+c=7\)\(B=\dfrac{\pi}{3}\),则\(b=\)\(\underline{\quad \quad}\).
 

**参考答案 **

  1. **答案 ** \(D\)
    **解析 ** 因为\(A=30°\)\(b=\sqrt{3}\)\(c=1\)
    \(\therefore a^2=b^2+c^2-2 b \cos A=\sqrt{3}^2+1^2-2 \times \sqrt{3} \times 1 \times \cos 30^{\circ}=1\)
    \(a=1\)
    故选:\(D\)

  2. **答案 ** \(B\)
    **解析 ** 由余弦定理可得\(a^2=b^2+c^2-2bc\cos A\)
    \(9=27+c^2-9c\),即\(c^2-9c+18=0\),解得\(c=3\)\(c=6\)
    故选:\(B\)

  3. **答案 ** \(1\)
    **解析 ** 由余弦定理得, \(c=\sqrt{a^2+b^2-2 a b \cos C}=\sqrt{1+2-2 \times 1 \times \sqrt{2} \times \dfrac{\sqrt{2}}{2}}=1\)

  4. **答案 ** \(5\)
    **解析 ** 由余弦定理知,\(b^2=a^2+c^2-2ac\cos ⁡B=(a+c)^2-2ac-2ac \cos ⁡B\)
    \(=49-2 \times 8-2 \times 8 \times \dfrac{1}{2}=25\),所以\(b=5\)
     

【题型2】 余弦定理的运用

**【典题1】 **已知\(△ABC\)中,角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\).若\(2b\cos ⁡C=a+2c\cos ⁡B\)\(b=\sqrt{2} c\),则\(\cos ⁡C=\)\(\underline{\quad \quad}\)
**解析 ** 由余弦定理及\(2b\cos ⁡C=a+2c\cos ⁡B\)知, \(2 b \cdot \dfrac{a^2+b^2-c^2}{2 a b}=a+2 c \cdot \dfrac{a^2+c^2-b^2}{2 a c}\)
化简可得\(a^2=2(b^2-c^2 )\)
因为\(b=\sqrt{2} c\),所以\(a^2=2(2c^2-c^2 )=2c^2\),即\(a=\sqrt{2} c\)
由余弦定理知, \(\cos C=\dfrac{a^2+b^2-c^2}{2 a b}=\dfrac{2 c^2+2 c^2-c^2}{2 \cdot \sqrt{2} c \cdot \sqrt{2} c}=\dfrac{3}{4}\)
**点拨 ** 遇到类似"\(2b\cos ⁡C=a+2c\cos ⁡B\)"含角含边的等式,可化为仅含角或仅含边的等式.
 

**【典题2】 **在\(△ABC\)中,角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\),已知\(a=4\)\(b=5\)\(c=6\),则\(BC\)边上的中线长\(AD=\)\(\underline{\quad \quad}\)
**解析 ** 因为\(a=4\)\(b=5\)\(c=6\)
所以 \(\cos B=\dfrac{a^2+c^2-b^2}{2 a c}=\dfrac{16+36-25}{2 \times 4 \times 6}=\dfrac{9}{16}\)
\(AD\)\(BC\)边上的中线长,
所以 \(B D=\dfrac{a}{2}=2\)
\(△ABD\)中,由余弦定理可得 \(A D^2=c^2+\left(\dfrac{a}{2}\right)^2-2 \cdot c \cdot \dfrac{a}{2} \cdot \cos B=36+4-2 \times 6 \times 2 \times \dfrac{9}{16}=\dfrac{53}{2}\)
可得 \(A D=\dfrac{\sqrt{106}}{2}\)
image.png
**点拨 ** 对于类似本题图象含有多个三角形的问题,一是尽量去思考在每个三角形中哪些角哪些边可求尽量先确定;二是注意公角或公边的三角形间条件转换.
 

【巩固练习】

1.在\(△ABC\)中,角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\).若 \(b^2+c^2-a^2=\dfrac{6}{5} b c\),则\(\sin⁡ A\)的值为\(\underline{\quad \quad}\).
 

2.在\(△ABC\)中,内角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\),若\(2a^2=2b^2+bc\)\(\cos A=\dfrac{1}{4}\),则 \(\dfrac{b}{c}=\) \(\underline{\quad \quad}\) .
 

3.设\(△ABC\)的内角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\).若\(b^2=ac\)\(a+c=4\)\(\overrightarrow{B A} \cdot \overrightarrow{B C}=3\),则\(\cos ⁡B=\)\(\underline{\quad \quad}\)
 

4.在钝角三角形\(ABC\)中,\(a=1\)\(b=2\),则边\(c\)的取值范围是\(\underline{\quad \quad}\)
 

5.在\(△ABC\)中,\(D\)\(AB\)边上一点,\(AD=2DB\)\(DC⊥AC\)\(DC=\sqrt{3}\)\(B C=\sqrt{7}\),则\(AB=\)\(\underline{\quad \quad}\)
 

**参考答案 **

  1. **答案 ** \(\dfrac{4}{5}\)
    **解析 ** \(\because b^2+c^2-a^2=\dfrac{6}{5} b c\)
    又由余弦定理可得,\(b^2+c^2-a^2=2bc⋅\cos ⁡A\)
    \(\therefore \dfrac{6}{5} b c=2 b c \cdot \cos A\),即 \(\cos A=\dfrac{3}{5}\)
    \(\therefore \sin A=\sqrt{1-\cos ^2 A}=\dfrac{4}{5}\)

  2. **答案 ** \(1\)
    **解析 ** 在\(△ABC\)中,\(2a^2=2b^2+bc\),整理得 \(b^2=a^2-\dfrac{1}{2} b c\)
    由余弦定理: \(\cos A=\dfrac{b^2+c^2-a^2}{2 b c}=\dfrac{c^2-\dfrac{1}{2} b c}{2 b c}=\dfrac{2 c-b}{4 b}=\dfrac{1}{4}\)
    整理得 \(\dfrac{b}{c}=1\)

  3. **答案 ** \(\dfrac{9}{10}\)
    **解析 ** 由\(\overrightarrow{B A} \cdot \overrightarrow{B C}=3\),得\(ca\cos ⁡B=3\)
    结合余弦定理可得 \(a c \cdot \dfrac{a^2+c^2-b^2}{2 a c}=3\)
    \(\therefore a^2+c^2-b^2=6\)\(\therefore (a+c)^2-2ac-b^2=6\)
    \(\therefore 3b^2=10\)\(\therefore b^2=\dfrac{10}{3}\)
    \(\therefore \cos B=\dfrac{9}{10}\)

  4. **答案 ** \(1<c<\sqrt{3}\)\(\sqrt{5}<c<3\)
    **解析 ** ①\(∵\)\(∠C\)是钝角时,有\(∠C>90°\)
    \(\therefore c>\sqrt{a^2+b^2}=\sqrt{5}\)
    \(a+b>c\),可得\(c<1+2=3\)
    \(\therefore\) 可得边\(c\)的取值范围是\((\sqrt{5},3)\)
    ②当\(∠B\)是钝角时,有\(∠B>90°\)
    \(\therefore b^2>a^2+c^2\),可得\(4>1+c^2\),解得\(c<\sqrt{3}\)
    \(c>b-a=1\)
    \(\therefore 1<c<\sqrt{3}\)
    综上,边\(c\)的取值范围是\(1<c<\sqrt{3}\)\(\sqrt{5}<c<3\)

  5. **答案 ** \(1\)
    **解析 ** 如图,设\(BD=x\),则由余弦定理可得, \(\cos A=\dfrac{\sqrt{4 x^2-3}}{2 x}\)
    又由余弦定理可得, \(7=B C^2=9 x^2+\left(4 x^2-3\right)-2 \cdot 3 x \cdot \sqrt{4 x^2-3} \cos A\)
    \(=13 x^2-6 x \cdot \sqrt{4 x^2-3} \times \dfrac{\sqrt{4 x^2-3}}{2 x}-3\)
    \(7=6+x^2\),解得\(x=1\)
    \(\therefore AB=3\)
    故答案为:\(1\).
    image.png
     

分层练习

【A组---基础题】

1.已知\(a\)\(b\)\(c\)分别为\(△ABC\)内角\(A\)\(B\)\(C\)的对边,若\(c=3\)\(b=\sqrt{3}\)\(B=30°\),则\(a=\)(  )
 A.\(3\) \(\qquad \qquad \qquad\) B.\(2\sqrt{3}\) \(\qquad \qquad \qquad\) C.\(\sqrt{3}\)\(2\sqrt{3}\) \(\qquad \qquad \qquad\) D.\(3\)\(2\sqrt{3}\)
 

2.在\(△ABC\)中,角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\),若\(a=4\)\(b=3\)\(c=\sqrt{13}\),则\(C=\)(  )
 A.\(30°\) \(\qquad \qquad \qquad\) B.\(45°\) \(\qquad \qquad \qquad\) C.\(60°\) \(\qquad \qquad \qquad\) D.\(120°\)
 

3.(多选)已知\(△ABC\)中,角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\),且满足\(B=\dfrac{\pi}{3}\)\(a+c=\sqrt{3} b\),则 \(\dfrac{a}{c}=\)(  )  
 A.\(2\) \(\qquad \qquad \qquad\) B.\(3\) \(\qquad \qquad \qquad\) C. \(\dfrac{1}{2}\) \(\qquad \qquad \qquad\) D. \(\dfrac{1}{3}\)
 

4.在\(△ABC\)中,\(a^2=b^2+c^2+bc\),则\(∠A=\)\(\underline{\quad \quad}\) .
 

5.在\(△ABC\)中,若\(a=2\)\(b=4\)\(\cos C=\dfrac{1}{4}\),则\(△ABC\)的周长等于\(\underline{\quad \quad}\).
 

6.已知\(△ABC\)中,角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\),且满足 \(a c \cos B=a^2-b^2+\dfrac{1}{2} b c\),则\(A=\)\(\underline{\quad \quad}\)
 

7.在\(△ABC\)中,角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\).已知 \(C=\dfrac{\pi}{3}\)\(b^2-c^2=\dfrac{1}{2} a^2\),则\(\cos ⁡A=\)\(\underline{\quad \quad}\)
 

8.在\(△ABC\)中,内角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\).已知\(c=2\)\(b=1\)\(\cos C=\dfrac{1}{4}\).则\(△ABC\)的中线\(AD\)的长为\(\underline{\quad \quad}\)
 

9.如图所示,在平面四边形\(ABCD\)中, \(A B=\sqrt{10}\)\(BC=3\)\(AC=5\)\(CD=2\sqrt{2}\)\(∠BCD=135^∘\)
  (1)求\(\sin⁡∠ACB\);(2)求\(AD\)的长.
image.png
 

**参考答案 **

  1. **答案 ** \(C\)
    **解析 **\(\because c=3\)\(b=\sqrt{3}\)\(B=30°\)
    \(\therefore\) 由余弦定理可得:\(b^2=a^2+c^2-2ac\cos B\)
    可得 \(3=a^2+3^2-2 \times a \times 3 \times \dfrac{\sqrt{3}}{2},\),可得\(a^2-3\sqrt{3} a+6=0\)
    \(\therefore\) 解得\(a=\sqrt{3}\),或\(2\sqrt{3}\)
    故选:\(C\)

  2. **答案 ** \(C\)
    **解析 ** 由余弦定理可得, \(\cos C=\dfrac{a^2+b^2-c^2}{2 a b}=\dfrac{16+9-13}{2 \times 4 \times 3}=\dfrac{1}{2}\)
    因为\(C\)为三角形的内角,故 \(C=\dfrac{1}{3} \pi\)
    故选:\(C\)

  3. **答案 ** \(AC\)
    **解析 ** 由余弦定理知, \(\cos B=\dfrac{a^2+c^2-b^2}{2 a c}=\dfrac{a^2+c^2-\left(\dfrac{a+c}{\sqrt{3}}\right)^2}{2 a c}\)
    \(∵B=\dfrac{\pi}{3}\)\(a+c=\sqrt{3} b\)
    \(\therefore \dfrac{1}{2}=\dfrac{a^2+c^2-\left(\dfrac{a+c}{\sqrt{3}}\right)^2}{2 a c}\),化简得\(2a^2-5ac+2c^2=0\)
    解得 \(a=\dfrac{1}{2} c\)\(a=2c\)
    \(\therefore \dfrac{a}{c}=\dfrac{1}{2}\)\(2\)
    故选:\(AC\)

  4. **答案 ** \(120^∘\)
    **解析 ** 因为在 中,设\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\),若\(a^2=b^2+c^2+bc\)
    由余弦定理可知 \(\cos A=-\dfrac{1}{2}\),所以\(A=120^∘\)

  5. **答案 ** \(10\)
    **解析 ** 因为\(a=2\)\(b=4\)\(\cos C=\dfrac{1}{4}\)
    由余弦定理得: \(c^2=a^2+b^2-2 a b \cos C=4+16-2 \times 2 \times 4 \times \dfrac{1}{4}=16\)
    所以\(c=4\)
    所以\(△ABC\)的周长为\(a+b+c=2+4+4=10\)

  6. **答案 ** \(\dfrac{\pi}{3}\)
    **解析 ** \(a c \cos B=a^2-b^2+\dfrac{1}{2} b c\)
    直接利用余弦定理 \(\cos B=\dfrac{a^2+c^2-b^2}{2 a c}\)
    转换为\(b^2+c^2-a^2=bc\),整理得 \(\cos A=\dfrac{b^2+c^2-a^2}{2 b c}=\dfrac{1}{2}\)
    由于\(0<A<π\),所以 \(A=\dfrac{\pi}{3}\)

  7. **答案 ** \(\dfrac{2 \sqrt{7}}{7}\)
    **解析 ** \(△ABC\)中,角\(A\)\(B\)\(C\)和它们的对边\(a\)\(b\)\(c\)\(C=\dfrac{\pi}{3}\)\(b^2-c^2=\dfrac{1}{2} a^2\)
    由余弦定理可得\(c^2=a^2+b^2-2ab⋅\cos ⁡C=a^2+b^2-ab\)
    \(b^2-c^2=ab-a^2\)
    \(\therefore \dfrac{a^2}{2}=a b-a^2\)\(b=\dfrac{3 a}{2}\)
    再把 \(b=\dfrac{3 a}{2}\)代入 \(b^2-c^2=\dfrac{1}{2} a^2\),可得 \(c=\dfrac{\sqrt{7}}{2} a\)
    \(\cos A=\dfrac{b^2+c^2-a^2}{2 b c}=\dfrac{2 \sqrt{7}}{7}\)

  8. **答案 ** \(\dfrac{\sqrt{6}}{2}\)
    **解析 ** 如图所示,
    image.png
    \(△ABC\)中,\(c=2\)\(b=1\)\(\cos C=\dfrac{1}{4}\)
    由余弦定理得,\(c^2=a^2+b^2-2ac\cos C\),即 \(4=a^2+1-2 a \times 1 \times \dfrac{1}{4}\)
    整理得\(2a^2-a-6=0\),解得\(a=2\)\(a=-\dfrac{3}{2}\)(舍去);
    所以 \(C D=\dfrac{1}{2} a=1\)
    由余弦定理得, \(A D^2=12+12-2 \times 1 \times 1 \times \dfrac{1}{4}=\dfrac{3}{2}\)
    解得 \(A D=\dfrac{\sqrt{6}}{2}\)
    所以\(△ABC\)的中线AD的长为\(\dfrac{\sqrt{6}}{2}\)
    故答案为:\(\dfrac{\sqrt{6}}{2}\)

  9. **答案 ** (1) \(\dfrac{3}{5}\); (2) \(\sqrt{37}\).
    **解析 ** (1)在\(△ABC\)中,\(A B=\sqrt{10}\)\(BC=3\)\(AC=5\)
    由余弦定理可得 \(\cos \angle A C B=\dfrac{A C^2+B C^2-A B^2}{2 A C \cdot B C}=\dfrac{25+9-10}{2 \times 5 \times 3}=\dfrac{4}{5}\)
    \(\therefore \sin \angle A C B=\sqrt{1-\cos ^2 \angle A C B}=\dfrac{3}{5}\)
    (2)结合(1)可知 \(\cos \angle A C D=\cos \left(135^{\circ}-\angle A C B\right)=\cos 135^{\circ} \cos \angle A C B+\sin 135^{\circ} \sin \angle A C B\)
    \(=-\dfrac{\sqrt{2}}{2} \times \dfrac{4}{5}+\dfrac{\sqrt{2}}{2} \times \dfrac{3}{5}=-\dfrac{\sqrt{2}}{10}\)
    \(\because C D=2 \sqrt{2}\)\(AC=5\)
    \(\therefore\)\(△ACD\)中,由余弦定理可得
    \(A D=\sqrt{A C^2+C D^2-2 A C \cdot C D \cdot \cos \angle A C D}\)\(=\sqrt{5^2+(2 \sqrt{2})^2-2 \times 5 \times 2 \sqrt{2} \times\left(-\dfrac{\sqrt{2}}{10}\right)}=\sqrt{37}\)
     

【B组---提高题】

1.\(Δ ABC\)中三边上的高依次为\(\dfrac{1}{13}\)\(\dfrac{1}{5}\)\(\dfrac{1}{11}\),判定\(ΔABC\)的形状.
 

2.在\(△ABC\)中,\(∠C=90°\)\(M\)\(BC\)边上一点,且满足 \(\overrightarrow{C M}=2 \overrightarrow{M B}\),若 \(\sin \angle B A M=\dfrac{1}{5}\),则\(\sin∠BAC=\)\(\underline{\quad \quad}\)
 

**参考答案 **

  1. **答案 ** 钝角三角形
    **解析 ** 设\(Δ ABC\)三边分别为\(a\)\(b\)\(c\)\(S_{\triangle A B C}=\dfrac{1}{2} a \cdot \dfrac{1}{13}=\dfrac{1}{2} b \cdot \dfrac{1}{11}=\dfrac{1}{2} c \cdot \dfrac{1}{5}\)
    所以 \(\dfrac{a}{13}=\dfrac{b}{11}=\dfrac{c}{5}\),设\(a=13 k\)\(b=11 k\)\(c=5 k(k>0)\)
    因为\(11 k+5 k>13 k\)
    故能构成三角形,取大角\(A\)
    \(\cos A=\dfrac{b^2+c^2-a^2}{2 b c}=\dfrac{11^2+5^2-13^2}{2 \times 11 \times 5}<0\)
    所以\(A\)为钝角,所以\(Δ ABC\)为钝角三角形.

  2. **答案 ** \(\dfrac{\sqrt{15}}{5}\)
    **解析 ** 记\(∠BAM=θ\),则 \(\sin \theta=\dfrac{1}{5}\)
    \(BC=3\),因\(\overrightarrow{C M}=2 \overrightarrow{M B}\),所以\(BM=1\)\(MC=2\)
    \(CA=t\),由\(∠C=90°\),得 \(A B=\sqrt{9+t^2}\)\(A M=\sqrt{4+t^2}\)
    \(\sin \theta=\dfrac{1}{5}\),所以 \(\cos \theta=\dfrac{2 \sqrt{6}}{5}\)
    \(B M^2=A B^2+A M^2-2 A B \cdot A M \cos \theta\),即 \(1=9+t^2+4+t^2-2 \sqrt{9+t^2} \sqrt{4+t^2} \cdot \dfrac{2 \sqrt{6}}{5}\)
    整理得:\(t^4-12t^2+36=0\),即\((t^2-6)^2=0\),所以\(t^2=6\)
    所以 \(A B=\sqrt{9+t^2}=\sqrt{9+6}=\sqrt{15}\)
    所以 \(\sin \angle B A C=\dfrac{3}{\sqrt{15}}=\dfrac{\sqrt{15}}{5}\)
    故答案为: \(\dfrac{\sqrt{15}}{5}\)