cuda流的使用

发布时间 2024-01-04 22:34:34作者: 小丑_jk

CUDA流表示一个GPU操作队列,该队列中的操作将以添加到流中的先后顺序而依次执行。可以将一个流看做是GPU上的一个任务,不同任务可以并行执行。使用CUDA流,首先要选择一个支持设备重叠(Device Overlap)功能的设备,支持设备重叠功能的GPU能够在执行一个CUDA核函数的同时,还能在主机和设备之间执行复制数据操作。

 

支持重叠功能的设备的这一特性很重要,可以在一定程度上提升GPU程序的执行效率。一般情况下,CPU内存远大于GPU内存,对于数据量比较大的情况,不可能把CPU缓冲区中的数据一次性传输给GPU,需要分块传输,如果能够在分块传输的同时,GPU也在执行核函数运算,这样的异步操作,就用到设备的重叠功能,能够提高运算性能。

 

不使用流:

#include "cuda_runtime.h"  
#include <iostream>
#include <stdio.h>  
#include <math.h>  
#include <device_launch_parameters.h>
#define N (1024*1024)  
#define FULL_DATA_SIZE N*20  
 
__global__ void kernel(int* a, int *b, int*c)
{
    int threadID = blockIdx.x * blockDim.x + threadIdx.x;
 
    if (threadID < N)
    {
        c[threadID] = (a[threadID] + b[threadID]) / 2;
    }
}
 
int main()
{
    //启动计时器
    cudaEvent_t start, stop;
    float elapsedTime;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    cudaEventRecord(start, 0);
 
    int *host_a, *host_b, *host_c;
    int *dev_a, *dev_b, *dev_c;
 
    //在GPU上分配内存
    cudaMalloc((void**)&dev_a, FULL_DATA_SIZE * sizeof(int));
    cudaMalloc((void**)&dev_b, FULL_DATA_SIZE * sizeof(int));
    cudaMalloc((void**)&dev_c, FULL_DATA_SIZE * sizeof(int));
 
    //在CPU上分配可分页内存
    host_a = (int*)malloc(FULL_DATA_SIZE * sizeof(int));
    host_b = (int*)malloc(FULL_DATA_SIZE * sizeof(int));
    host_c = (int*)malloc(FULL_DATA_SIZE * sizeof(int));
 
    //主机上的内存赋值
    for (int i = 0; i < FULL_DATA_SIZE; i++)
    {
        host_a[i] = i;
        host_b[i] = FULL_DATA_SIZE - i;
    }
 
    //从主机到设备复制数据
    cudaMemcpy(dev_a, host_a, FULL_DATA_SIZE * sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(dev_b, host_b, FULL_DATA_SIZE * sizeof(int), cudaMemcpyHostToDevice);
 
    kernel << <FULL_DATA_SIZE / 1024, 1024 >> > (dev_a, dev_b, dev_c);
 
    //数据拷贝回主机
    cudaMemcpy(host_c, dev_c, FULL_DATA_SIZE * sizeof(int), cudaMemcpyDeviceToHost);
 
    //计时结束
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&elapsedTime, start, stop);
 
    std::cout << "消耗时间: " << elapsedTime << std::endl;
 
    //输出前10个结果
    for (int i = 0; i < 10; i++)
    {
        std::cout << host_c[i] << std::endl;
    }
 
    getchar();
 
    cudaFreeHost(host_a);
    cudaFreeHost(host_b);
    cudaFreeHost(host_c);
 
    cudaFree(dev_a);
    cudaFree(dev_b);
    cudaFree(dev_c);
 
    return 0;
}

使用流:

#include "cuda_runtime.h"  
#include <iostream>
#include <stdio.h>  
#include <math.h>  
#include <device_launch_parameters.h>
#define N (1024*1024)  
#define FULL_DATA_SIZE N*20  
 
__global__ void kernel(int* a, int *b, int*c)
{
    int threadID = blockIdx.x * blockDim.x + threadIdx.x;
 
    if (threadID < N)
    {
        c[threadID] = (a[threadID] + b[threadID]) / 2;
    }
}
 
int main()
{
    //获取设备属性
    cudaDeviceProp prop;
    int deviceID;
    cudaGetDevice(&deviceID);
    cudaGetDeviceProperties(&prop, deviceID);
 
    //检查设备是否支持重叠功能
    if (!prop.deviceOverlap)
    {
        printf("No device will handle overlaps. so no speed up from stream.\n");
        return 0;
    }
 
    //启动计时器
    cudaEvent_t start, stop;
    float elapsedTime;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    cudaEventRecord(start, 0);
 
    //创建一个CUDA流
    cudaStream_t stream;
    cudaStreamCreate(&stream);
 
    int *host_a, *host_b, *host_c;
    int *dev_a, *dev_b, *dev_c;
 
    //在GPU上分配内存
    cudaMalloc((void**)&dev_a, N * sizeof(int));
    cudaMalloc((void**)&dev_b, N * sizeof(int));
    cudaMalloc((void**)&dev_c, N * sizeof(int));
 
    //在CPU上分配页锁定内存
    cudaHostAlloc((void**)&host_a, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault);
    cudaHostAlloc((void**)&host_b, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault);
    cudaHostAlloc((void**)&host_c, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault);
 
    //主机上的内存赋值
    for (int i = 0; i < FULL_DATA_SIZE; i++)
    {
        host_a[i] = i;
        host_b[i] = FULL_DATA_SIZE - i;
    }
 
    for (int i = 0; i < FULL_DATA_SIZE; i += N)
    {
        cudaMemcpyAsync(dev_a, host_a + i, N * sizeof(int), cudaMemcpyHostToDevice, stream);
        cudaMemcpyAsync(dev_b, host_b + i, N * sizeof(int), cudaMemcpyHostToDevice, stream);
 
        kernel << <N / 1024, 1024, 0, stream >> > (dev_a, dev_b, dev_c);
 
        cudaMemcpyAsync(host_c + i, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost, stream);
    }
 
    // wait until gpu execution finish  
    cudaStreamSynchronize(stream);
 
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&elapsedTime, start, stop);
 
    std::cout << "消耗时间: " << elapsedTime << std::endl;
 
    //输出前10个结果
    for (int i = 0; i < 10; i++)
    {
        std::cout << host_c[i] << std::endl;
    }
 
    getchar();
 
    // free stream and mem  
    cudaFreeHost(host_a);
    cudaFreeHost(host_b);
    cudaFreeHost(host_c);
 
    cudaFree(dev_a);
    cudaFree(dev_b);
    cudaFree(dev_c);
 
    cudaStreamDestroy(stream);
    return 0;
}